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An important error source for the calibration of tropospheric delay variations at
microwave frequencies is the “retrieval error” that is due to the uncertainty in con-
version from observables (sky brightness temperatures and surface measurements)
to path delay. A large database of vertical water-vapor density profiles (from lidar
measurements) and vertical temperature profiles (from a radio acoustic sounding
system (RASS)) has been used to quantify the expected retrieval error as a func-
tion of time scale, instrumental configuration, and measurement accuracy. One key
result is that a three-channel (e.g., 22.2-, 23.8-, and 31.4-GHz) water vapor radiome-
ter (WVR) and a two-channel microwave temperature profiler (MTP) are nearly
optimal and are needed in order to meet the accuracy goals for the Cassini Gravi-
tational Wave Search Experiment (GWE). A second key result is that model-based
Bayesian inversion techniques provide substantially better accuracy than do statis-
tical retrieval methods. The estimated retrieval error for the measurement of path
delay variations (using Bayesian methods and the above instrumental configuration
with targeted stability) is a factor >6 smaller than the total GWE tropospheric
calibration requirement at time scales >5000 s. At a 1000-s time scale, the error is
a factor of ~2 smaller than the GWE requirement. However, the retrieval error is
approximately equal to the GWE requirement at a time scale of 100 s.

[. Introduction

The planned Cassini Gravitational Wave Search Experiment (GWE) requires very accurate calibra-
tion of fluctuations in the line-of-sight, water vapor—induced microwave path delay over ~10-hour time
intervals. Significant components of the error budget for such a tropospheric calibration measurement
include the effects of dry (nonvapor) fluctuations, radiometer calibration and stability, pointing, beam
matching and offset between the tropospheric calibration (tropo-cal) radiometer and the DSN antenna,
vapor absorption model accuracy, and retrieval algorithm accuracy. This article describes developments
in the area of retrieval algorithm techniques and the radiometer calibration and stability requirements
for meeting the Cassini tropo-cal specifications.

As used here, “retrieval error” is defined as the error in estimated wet path delay that results solely from
the nonunique conversion of observable measurements (primarily microwave brightness temperatures) to
the delay value, i.e., when all other error sources, including modeling and instrument errors, are assumed



to be zero. In the results that will follow, however, retrieval algorithms are tested using plausible ranges
of (nonzero) observable noise. Thus, the resultant retrieval errors will reflect the combined effects of
algorithm error and instrument stability.

For application to the Cassini GWE tropo-cal effort, the distinction between retrieval accuracy and
precision is crucial. In the sidereal Doppler tracking of the Cassini spacecraft, the variations in atmo-
spheric delay over minute-to-multihour time scales are the critical quantities to be measured. Uncalibrated
constant offsets and linear trends will not compromise the success of the GWE. Thus, the GWE tropo-cal
requirements and goals are expressed in terms of the Allan standard deviation (ASD), which provides a
measure of the nonlinear delay variations as a function of time interval At [1]:

[{(8(t +200) 26t + At) + 6(t)}2>}1/ ’

ASD(At) = NG

in s/s, where () denotes ensemble averaging and 6(¢) is the delay in seconds at time ¢.

The emphasis on measuring delay variations, rather than absolute delay, requires a modification to the
normal method (e.g., [2]) of evaluating retrieval algorithms. For example, the predicted performance of
statistical retrieval algorithms is usually given as an rms residual from a zero-bias, multilinear regression of
observables versus path delay, including the effects of observable noise. The regression is (usually) derived
from a multiyear radiosonde archive of computed path delays and observables. When the observable noise
is negligible, the residual for path delay retrieval reflects the nonuniqueness of the inversion solution.
Variations in temperature conditions and the height distribution of the vapor contribute to the retrieval
scatter. When, however, the derived algorithm is applied to subsets of the observable archive (stratified,
for example, by temperature conditions), the errors appear more as offsets, with reduced scatter due
to the restricted range of conditions. We expect that retrieval algorithms applied to short time-interval
conditions would also exhibit this character, with retrieval error scatter determined by the variability in
the temperature and vapor-height distribution conditions over the time interval of interest.

The major difficulty in evaluating the expected reduction in retrieval error scatter over time intervals
from 100 to 10,000 s (the range of interest for the Cassini GWE) has been the absence of reliable data
characterizing profile changes in vapor and temperature over intervals of minutes to hours. Radiosondes
are routinely obtained every 12 hours and, thus, cannot provide a useful testbed for evaluating the
variations in retrieval errors over Cassini GWE time scales. To remedy this problem, we have obtained
from Yong Han at the Environmental Testing Laboratory of the National Oceanic and Atmospheric
Administration (NOAA/ETL) in Boulder, Colorado, a data set that provides 2-minute time series of both
RASS-derived temperature and lidar-derived water vapor profiles over ~10-hour nighttime intervals from
Coffeeville, Kansas. The lidar data appear to be the best yet published, exhibiting excellent agreement
with colocated radiosonde data [3]. The profile data are from November and December 1991, with
clear conditions and path delay levels close to the expected range for Goldstone in winter. From the
2-minute Coffeeville profile data, time series of path delay, radiometric brightness temperatures, and
surface meteorology observables have been computed and used as a testbed for assessing the accuracy
and precision of candidate retrieval algorithms.

In Section II of this article, the testbed of lidar plus RASS profile data will be described. In Section III,
the candidate algorithms considered to date will be described, including both statistical and Bayesian
techniques. In Section IV, we outline the simulation procedures by which each algorithm was evaluated
using the testbed data. Sections V and VI contain first-stage and second-stage results in terms of the
optimum retrieval method, required instrumentation, frequency selection, and radiometer calibration
requirements. In Section VII, the ASD performance of a proposed prototype Cassini tropo-cal system is
evaluated as a function of radiometer stability and compared with the GWE requirements. Section VIII
contains conclusions and plans for future work.



[l. Testbed of Profile Time Series Data

The Coffeeville data received from NOAA /ETL consisted of 11 nights of temperature and vapor-density
profile data at 75-m vertical spacing and 2-min time intervals. The temperature profile data from 0.35 km
to ~2 km were derived from RASS measurements taken at 15-min intervals with a vertical resolution
of 150 m. Temperatures below the lowest RASS range gate (0.35 km) were obtained by interpolation
using surface meteorology data. Linear interpolation was used to produce the final 2-min profiles with
75-m vertical spacing. Above 2 km, research quality radiosonde data, obtained at 3- to 12-hour intervals,
were used to complete the temperature profiles (with considerable interpolation smoothing in the time
domain).

The vapor density profile data were provided by the Raman lidar measurements, obtained at 1-min
intervals (and averaged to produce the 2-min data) with 75-m vertical resolution. Absolute calibration
was obtained by a single least-squares regression to the vapor profile data obtained from 41 coincident
radiosonde measurements over a 3-week period. The estimated random error of the lidar vapor density
measurements (due to instrument noise) ranged from approximately 0.3 to 1.0 percent for the lowest 2 km
to approximately 10 percent at ~8 km. Near the 8-km range limit, the lidar-derived vapor densities often
exceeded saturation for the corresponding temperature. For these data, and all heights above 8 km, we
have applied a correction, assigning all vapor densities to be equivalent to a 20-percent relative humidity
condition. For heights below the lowest lidar range gate (185 m), vapor densities were obtained by
interpolation with the surface meteorology data.

From the 11 nighttime data sets, we have selected 4 thus far for algorithm simulation studies. This
selection was based primarily on data completeness and the time variability of the profile data. (A
few of the data sets contained significant time gaps, and one night’s data had no time variation in the
temperature data.) The four selected November 1991 data sets have been designated days 12, 14, 15,
and 16, corresponding to the truncated file names transmitted from NOAA/ETL (not the exact days of
the month). The path delay and path-delay fluctuation levels at ~1-hour time scales for days 14, 15,
and 16 are comparable to typical Goldstone winter conditions. The day-12 path delay and fluctuation
levels are comparable to the highest levels observed for Goldstone winter conditions [4]. Temperature and
vapor-density time series, at selected heights, are shown for two of the data sets in Figs. 1 and 2. The
striking features are the large fractional excursions in vapor density on hour time scales or less, evidence
of the degree and scale of tropospheric turbulence.

Figure 3 shows the zenith path-delay time series computed from the days-12 and -15 profile data,
along with the calculated ASD fluctuation statistics. The day-15 path delay is typical of a Goldstone
winter night, while the day-12 data are representative of the wettest winter delay conditions expected at
Goldstone. The range of ASD values, typical of active winter Goldstone conditions [4], are approximately 5
to 50 times larger than the Cassini requirements and provide an excellent testbed for evaluating candidate
tropo-cal instrumentation and retrieval algorithms.

[1l. Description of Retrieval Algorithms

For the purposes of this article, the term “retrieval algorithm” refers to a specific inversion technique
applied to a selected set of instrument observables. The two inversion techniques considered are the linear
statistical method and the model-based Bayesian method. The candidate instrumentation includes 2-, 3-,
and 11-channel water vapor radiometers (WVRs); a 2-channel, elevation-scanning microwave temperature
profiler (MTP); and surface measurements of temperature, pressure, and vapor density. As used here,
“case number” refers to a selected subset of the candidate instrumentation and a specific assignment of
measurement noise values. Also as used here, “noise” refers to the random error of a single measurement.
Perhaps a better term would be stability since we are using noise as a measure of an instrument’s precision
over all time scales of the retrieval interval. Unless specified otherwise, all assigned instrument errors are
assumed to be Gaussian-distributed white noise.



VAPOR DENSITY, g/m3

4.0

35

3.0

25

20

15

VAPOR DENSITY, g/m3

1.0

0.5

0.0

V(z=041)

T(z=0 km)

T(z=1.46)

V(z=1.46)

1

®) T(z=2.06 km)

T(z=3.03)

V(z=3.03)

T(z=4.01)

0 2 4 6 8 10 12

UT, h

14

Fig. 1. Time series of temperature and vapor density from the lidar and RASS data

obtained for day 12 at Coffeeville at heights (a) <2 km and (b) >2 km.

A. Statistical Algorithms

All statistical algorithms were generated using a 3-year (1990-1992) radiosonde archive from Topeka,
Kansas. Topeka is located ~160 miles due north of Coffeeville and has nearly the same elevation (340 m
at Topeka; 290 m at Coffeeville) and similar humidity conditions. The statistical algorithms assume that
the desired parameter (in our case, zenith wet path delay) can be expressed as a linear combination of

the instrument observables:

PD = PDpyean + 3 Ci(OB; — OBM EAN;)
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Fig. 2. Time series of temperature and vapor density from the lidar and RASS data
obtained for day 15 at Coffeeville at heights (a) <2 km and (b) >2 km.

where PDyean is the archive average path delay, OB; is the measured value of the ith observable (com-
puted from the profile data), OBM E AN; is the computed archive average for the ith observable, and the
C; are the linear retrieval coefficients generated by regression of the path delay versus observables-plus-
noise archive computed from the radiosonde database. The generated retrieval coefficients depend on the
assigned observable noise values because the error vector is added to the observables before regressing
with path delay. Thus, for low-noise cases, the coefficients approach values that would be produced by
a simple multilinear regression of computed path delays versus computed observables, and the predicted
retrieval error approaches the fit’s rms residual. For high-noise cases, the coefficients approach zero as
the observable information content diminishes, retrieved path delay values remain close to the archive
average, and the predicted retrieval error approaches the archive standard deviation in path delay.
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Fig. 3. Zenith wet path delay time series computed from the lidar and RASS
measurements at Coffeeville for the day-12 and day-15 intervals.

B. Bayesian Algorithms

The Bayesian method employs model-based inversion techniques to solve the radiative transfer equation
for discrete vapor and temperature profiles given the array of observable measurements. The profiles are
varied iteratively, with theoretical observables calculated each step, until a most-probable profile solution
is obtained. From this most-probable profile solution, the final retrieved path delay is computed directly.
The criteria for a most-probable solution include constraints based on a priori covariance statistics of the
profiles as well as the residuals between measured and computed observables. The covariance statistics
are derived from the same Topeka radiosonde archive used for the statistical algorithms and provide a
means for downweighting a profile solution that varies too greatly from the archive mean. In qualitative
terms, the most-probable profile solution is that which minimizes the residuals between measured and
computed observables while best conforming to the constraints of the a priori statistics.

Observable errors are taken into account by adjusting the relative weights assigned to the residual and
statistical constraints. Similarly to the statistical algorithms, higher observable errors lead to increased
weight for the a priori archive and less weight for the measurements.

V. Retrieval Simulation Procedures

For each of the four selected lidar-plus-RASS nighttime profile data sets, 2-min time series of path
delay and all candidate observables were computed by numerical solution of the radiative transfer equation
using our current nominal model of atmospheric absorption and refractivity. All candidate observables
used in the first two stages of testing are listed in Table 1 along with the range of associated Gaussian
errors that have been considered.

The range of WVR brightness temperature errors spans worst-to-best cases in the sense that poorly
monitored gain variations can easily result in 0.5-K drifts over multihour periods, while 0.01 K repre-
sents the multihour stability goal of the advanced WVR. Current WVRs, with careful gain drift mon-
itoring, have demonstrated stability at the 0.1-K level. The stability of current generation ground-
based MTPs is less certain, but the 0.1- to 1.0-K range probably brackets the actual performance. The



Table 1. Candidate observables and associated errors.

Observable no. Description Frequency, GHz Elevation angle, deg Error range, K
1 WVR TB* 20.0 90 0.01-0.50
2 WVR TB 20.4 90 0.01-0.50
3 WVR TB 20.7 90 0.01-0.50
4 WVR TB 21.2 90 0.01-0.50
5 WVR TB 21.7 90 0.01-0.50
6 WVR TB 22.235 90 0.01-0.50
7 WVR TB 22.7 90 0.01-0.50
8 WVR TB 23.2 90 0.01-0.50
9 WVR TB 23.6 90 0.01-0.50
10 WVR TB 24.0 90 0.01-0.50
11 WVR TB 31.4 90 0.01-0.50
12 MTP TB 54.4 90 0.10-1.00
13 MTP TB 54.4 42 0.10-1.00
14 MTP TB 54.4 30 0.10-1.00
15 MTP TB 57.97 90 0.10-1.00
16 MTP TB 57.97 42 0.10-1.00
17 MTP TB 57.97 30 0.10-1.00
18 Surface temperature — — 0.2 K
19 Surface pressure — — 1.0 mb
20 Surface vapor density — — 0.5 g/m?

2TB = brightness temperature.

single-point estimates of surface meteorology observable precision are values that are commonly cited and
that we assume are attainable with carefully calibrated off-the-shelf technology.

Using the computed “truth” time series of observables as algorithm inputs, retrieval simulations were
performed for individual cases by selecting an observable subset, adding Gaussian noise of the specified
level to each 2-minute observable array, and then retrieving the time series of zenith path delay over the
10- to 12-hour interval of the selected lidar-based data set. The time series of retrieval error (retrieved-
minus-truth path delay) was then computed, and measures of performance, including bias, scatter, and
error ASD, were calculated. Evaluations were then made comparing algorithm techniques (Bayesian
versus statistical) and different observable subsets, and assessing the effects of measurement stability.
When comparing the retrieval-error ASD results with the Cassini requirements and goals, it is important
to note that the first-stage retrieval simulations were performed for zenith path delay only, an overly
optimistic comparison in that the retrieval errors will scale with air mass and the actual Cassini tracking
will be very nearly sidereal. This issue is addressed in Section VI.

V. First-Stage Results

The initial selection of test cases was intended to provide insights on the following main issues:

(1) When, if at all, are Bayesian techniques clearly superior to statistical ones for path delay
retrieval?



(2) What improvements can be obtained by adding channels to the standard three-frequency
WVR?

(3) How much improvement is afforded by adding MTP and surface meteorology observables?

In the first stage of simulations, 24 cases were selected to investigate the above issues. These cases are
listed in Table 2 in terms of observable selection and assigned errors.

Table 2. First-stage simulation case description.

Error
Case no. Observable
WVR,K  MTP,K T,,K Ps,mb V,, g/m?
1 3-channel WVR 0.50 — — — —
2 3-channel WVR 0.10 — — — —
3 3-channel WVR 0.03 — — — —
4 3-channel WVR 0.01 — — — —
5 11-channel WVR 0.50 — — — —
6 11-channel WVR 0.10 — — — —
7 11-channel WVR 0.03 — — — —
8 11-channel WVR 0.01 — — — —
9 3-channel WVR +T% 0.01 — 0.2 — —
10 3-channel WVR +Ps 0.01 — — 1.0 —
11 3-channel WVR +V 0.01 — — — 0.5
12 3-channel WVR +Ts + Ps + Vs 0.01 — 0.2 1.0 0.5
13 11-channel WVR +T5 0.01 — 0.2 — —
14 11-channel WVR +Ps 0.01 — — 1.0 —
15 11-channel WVR, +Vj 0.01 — — — 0.5
16 11-channel WVR +7Ts + Ps 4+ Vs 0.01 — 0.2 1.0 0.5
17 3-channel WVR +MTP + T 0.01 1.0 0.2 — —
18 3-channel WVR +MTP + T 0.01 0.5 0.2 — —
19 3-channel WVR +MTP + T 0.01 0.1 0.2 — —
20 3-channel WVR +MTP +Ts + Ps + Vs 0.01 0.1 0.2 1.0 0.5
21 11-channel WVR + MTP +T; 0.01 1.0 0.2 — —
22 11-channel WVR + MTP +T; 0.01 0.5 0.2 — —
23 11-channel WVR + MTP +T% 0.01 0.1 0.2 — —
24 11-channel WVR + MTP +Ts + Ps + Vs 0.01 0.1 0.2 1.0 0.5

Note that “3-channel WVR” refers to the standard JPL WVR J-unit operating frequencies of 20.7, 22.2,
and 31.4 GHz, while “11-channel WVR” refers to the full ensemble of WVR frequencies listed in Table 1.
For all cases that include MTP measurements, a two-channel (54.4- and 57.97-GHz) elevation-scanning
system is simulated with sky brightness temperature measurements at 30-, 42-, and 90-deg elevations. In
an earlier unpublished study, this frequency and elevation combination has been determined to be near
optimum for temperature profile retrievals for heights up to 5 to 7 km.

Retrievals for observable set case numbers 1 through 24 were simulated for the testbed data sets
designated days 12, 14, 15, and 16 using both the Bayesian and statistical methods. Results are shown
in Figs. 4 through 7 in terms of retrieval error bias and ASD. The most significant result in terms of bias



(Fig. 4) is that Bayesian methods applied to advanced WVR-plus-MTP observable sets (cases 17 through
24) always reduce the retrieved path delay bias to a level of ~0.01 cm or less, even for MTP errors as
large as 1.0 K. For cases without MTP observables (1 through 16), the biases have little or no correlation
with WVR errors. This result suggests that the nonlinear model-based algorithms, when temperature
profiling observables are included, effectively eliminate offsets due to pervasive conditions that depart
from the statistical archive average.
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Fig. 4. A comparison of Bayesian and statistical path delay retrievals in terms of bias for the Coffeeville testbed data.
The case numbers refer to specific selections of observables and observable errors (see Table 2 and the text for a more
detailed description): (a) day 12, (b) day 14, (c) day 15, and (d) day 16.

Figures 5 through 7 show the retrieval error ASD for three time scales that nearly span the GWE
intervals of interest. Also indicated on the plots are the Cassini ASD requirements (CR) and goals (CG)!
and annotated information describing the observables and observable errors for each case number. (For
further clarification, refer to Table 2.) Note that the Cassini specifications shown in Figs. 5 through 7
have been scaled downward by a 1/v/2 factor to account for the two-way tracking required by Cassini.
(For two-way tracking, the ASD of the retrieval error increases by a factor of approximately /2, assuming
the uplink and downlink retrieval errors are uncorrelated. This will be the case as long as the Cassini
signal round-trip travel time is greater than the ASD time scale of interest.)

1 Cassini Radio Science Ground System D-Level and Cost Review (internal document), Jet Propulsion Laboratory,
Pasadena, California, February 27, 1995.
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Based on the results shown in Figs. 5 through 7, and addressing the three issues outlined above, we
draw the following conclusions:

(1)

In terms of ASD, Bayesian retrievals are clearly superior to statistical methods when
temperature profile information (MTP) is available (cases 17 through 24). At the shorter
time scales (At = 120 s, Fig. 5), the Cassini requirements can only be approached by
utilizing Bayesian techniques with precise WVR and MTP observables. At the longer
time scales (Figs. 6 and 7), the Cassini goals can be met or exceeded using the Bayesian
techniques with the precise WVR-plus-MTP observable set. When only WVR or WVR-
plus-surface meteorology observables are available (cases 1 through 16), the results are
mixed. For the testbed data sets of days 14, 15, and 16, the Bayesian results are generally
as good or better than the statistical. For day 12, the statistical retrievals are superior
for non-MTP cases.

The addition of channels in the 20- to 24-GHz band to the standard three-channel WVR
produces no significant retrieval improvement in the ASD domain, with or without MTP
and surface meteorology observables, when the WVR errors are less than 0.1 K. In fact,
for WVR precision approaching the goal of the advanced WVR (0.01 to 0.03 K), the
ASD performance is actually significantly worse for the 11-channel system relative to
the standard 3-channel WVR when no MTP observables are used. (Compare cases 5
through 8 with 1 through 4 and cases 13 through 16 with 9 through 12.) This behavior
occurs for both the Bayesian and statistical retrievals at all time scales, and we have
no definitive explanation for it at this time. One contributing factor appears to be the
effect of increasing system noise with the addition of WVR channels. Theoretically, this
should not occur. If the covariance matrices are correctly calculated, the addition of re-
dundant or low information observables should not increase the retrieval noise. However,
examination of the statistical algorithms’ retrieval coefficients reveals the opposite to be
occurring. From Eq. (2), it is straightforward to derive the retrieval noise that results
from independent observable noise:

APD = [$(C,[A0B;]))] (3)

where APD is the retrieval noise and AOB; are the observable errors. Because the
observable errors are considered random, the AP D values are easily converted into ASD
values using Eq. (1). The result is that the system noise is the dominant component of
the statistical algorithm ASD values shown in Figs. 5 through 7 and is responsible for the
degradation in performance going from the 3-channel to the 11-channel WVR observable
sets. This result suggests that, for low WVR observable noise (<0.1 K) and strongly
information-redundant observables, the correlations of observables with path delay are
not being accurately calculated, due either to the inadequacy of the Topeka data archive
for resolving small differences in the effects of path delay on observables or errors that
are amplified in the inversion of a near-singular regression matrix.

We have also investigated the performance of a two-channel WVR for the Cassini tropo-
cal system to evaluate trade-offs between performance and the design simplification and
cost reductions afforded by a two-channel (versus three-channel) radiometer. The is-
sue was addressed using WVR-plus-MTP-plus-T; observable sets including two-channel
(20.7-, 31.4-GHz and 22.2-, 31.4-GHz) and three-channel (20.7-, 22.2-, and 31.4-GHz)
WVRs with wide ranges of WVR and MTP errors. The simulations were performed
using only the Bayesian algorithm on testbed days 12 and 15, which had the largest and
most variable path delay. The results indicated that for all tested combinations of WVR
and MTP errors the three-channel WVR system produces better ASD performance. The
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fractional improvement generally increases as both the WVR and MTP errors decrease.
For the low range of errors considered (<0.03 K for the WVR and <0.3 K for the MTP),
the three-channel reduction in the retrieval error ASD (relative to the best two-channel
result) ranges approximately from 20 to 50 percent for the three time scales of 120, 960,
and 4800 seconds. Based on these results, we concluded that a three-channel WVR is
the optimum choice for the Cassini tropo-cal system.

(3) With advanced WVR precision (0.01 K) and a Bayesian algorithm, the addition of
MTP (and the surface temperature) observables produces dramatic improvement in the
ASD domain of retrieval performance (cases 17 through 24). The performance depends
strongly on the MTP observable errors, improving by a factor of approximately 2 to 4
times as the MTP errors are reduced from 1.0 to 0.1 K. For the best-case MTP observ-
ables, with 0.1-K precision (cases 19, 20, 23, and 24), Cassini requirements for near-zenith
tracking are met or exceeded at all time scales. These results appear to 